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Electromagnetic Wave Effects on Microwave
Transistors Using a Full-Wave Time-Domain Model
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Abstract—A detailed full-wave time-domain simulation model
for the analysis of electromagnetic effects on the behavior of the
submicrometer-gate field-effect transistor (FET’s) is presented.
The full wave simulation model couples a three-dimensional (3-
D) time-domain solution of Maxwell’s equations to the active
device model. The active device model is based on the moments
of the Boltzmann’s transport equation obtained by integration
over the momentum space. The coupling between the two models
is established by using fields obtained from the solution of
Maxwell’s equations in the active device model to calculate the
current densities inside the device. These current densities are
used to update the electric and magnetic fields. Numerical results
are generated using the coupled model to investigate the effects of
electron-wave interaction on the behavior of microwave FET’s.
The results show that the voltage gain increases along the device
width. While the amplitude of the input-voltage wave decays
along the device width, due to the electromagnetic energy loss
to the conducting electrons, the amplitude of the output-voltage
wave increases as more and more energy is transferred from the
electrons to the propagating wave along the device width. The
simulation confirms that there is an optimum device width for
highest voltage gain for a given device structure, Fourier analysis
is performed on the device output characteristics to obtain the
gain-frequency and phase-frequency dependencies. The analysis
shows a nonlinear energy build-up and wave dispersion at higher
frequencies.

NOMENCLATURE
E Electric field.
H Magnetic field.
H*  Dc component of the magnetic field.
H**  Ac component of the magnetic field.
J Current density.
Jde Dc component of the current density.
J**  Total current density (dc and ac components).
k Boltzmann’s constant.
L, Gate length.
n Electron density.
Ny Active layer doping density.
T Position vector.
Py z-component of electron momentum.
q Electronic charge.
t Time.
v Electron velocity.
Vis Drain-to-source dc¢ voltage.
Vs Gate-to-source dc voltage.
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Awvgs  Peak value of the ac gate voltage.

€ Electron energy.

€ Equilibrium thermal energy.

€, p Permittivity and permeability of the medium, re-
spectively.

Te, Tm Energy and momentum relaxation times, respec-
tively.

Uy Low-field electron mobility.

w Frequency.

I. INTRODUCTION

VER THE past few years, physical modeling of semicon-

ductor devices has improved substantially. In fact, the
design and characterization of microwave devices and circuits
has had a constant shift from the traditional empirical and
equivalent circuit methods. With today’s powerful computing
capabilities, numerical simulation based on physical modeling
can be used to predict and provide better understanding of
device behavior. This approach becomes more desirable to
understand the physical phenomena resulting from the ever-
decreasing device dimensions. Usually, higher voltage gain
and operating frequencies in field-effect transistors (FET’s) are
achieved by using submicrometer-gate length. In such cases,
full account should be taken at least in two directions—that
along the conducting channel and that normal to it. Recently,
several two-dimensional (2-D) computer models have been
developed for this purpose (for example [1}-[6]).

Conventionally, physical modeling of semiconductor de-
vices employs a solution of Poisson’s equation to update the
electric field inside the device which, in principle, presents
no conceptual difficulty. However, interesting physical phe-
nomena arise from the manner in which charge fluctua-
tions and current responses are coupled to the fields. When
semiconductor devices are operated at high frequencies, the
semiconductor transport physics and consequently the device
modeling problem become more involved. In such cases,
quasi-static semiconductor device models fail to accurately
represent the effects of the physical phenomena where the
carriers interact with the propagating electromagnetic wave
along the device.

The problem of modeling high frequency devices needs
special attention. The short-wave period of the propagating
wave approaches the electron relaxation time and, because
electrons need a finite time to adjust their velocities to the
changes in field, electron transport is directly affected by the
propagating wave. This fact calls for the full accounting of
the varying fields inside the device. In switching and large-
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signal problems, the time-varying electric fields can be large
compared to the dc fields. Also, quasi-static evaluation of
the fields does not include the existing magnetic fields. The
magnetic fields are generated by the applied wave as well as
the moving charges inside the device and their effects have
to be inspected. The only acceptable method for representing
these various forces is to combine a full-wave dynamic field
solution with a semiconductor device model [7].

The moving carriers inside the device become a source
of electromagnetic (EM) fields. These EM fields, in turn,
affect carrier transport. This coupling is believed to have a
significant importance in simulating various electronic devices.
El-Ghazaly er al. [8] used a combination of direct solutions
of Maxwell’s equations and Monte Carlo (MC) models of
photocarrier transport to study the behavior of photoconductive
switches. However, for transistor modeling, several tens of
picoseconds of simulation time are needed to obtain small and
large-signal responses. Therefore, an alternative to the MC
approach, which requires very large computer time, has to be
used.

In this paper, the electron-wave interaction in
submicrometer-gate FET’s is analyzed. The analysis is
based on a full wave time-domain simulation model. The
full wave simulation model couples a three-dimensional
(3-D) time-domain solution of Maxwell’s equations to the
active device model. The active device model is based on the
moments of the Boltzmann’s transport equation. The coupling
between the two models is established by using fields obtained
from the solution of Maxwell’s equations in the active device
model to calculate the current densities inside the device.
These current densities are used to update the electric and
magnetic fields. The problem is solved in the time domain
because the carrier transport processes are highly nonlinear.

The approach presented in this paper has a clear impact
on the way we look at high frequency device modeling. It
represents a methodology in which equivalent circuits can be
improved by introducing elements representing electromag-
netic coupling, parasitics and discontinuities. In the following
section, the theoretical analysis of the full-wave model is
given. The numerical scheme used in the simulation is based
on the finite-difference time-domain method (FDTD) and
is presented in Section III. Finally, numerical results are
generated for a 0.2 yum gate MESFET and discussed in Section
Iv.

II. FULL-WAVE TIME-DOMAIN MODEL

Physical models for high frequency semiconductor devices
should be capable of representing short gate effects such as
nonisothermal transport and nonstationary electron dynamics
as well as the effects related to electromagnetic wave prop-
agation. Usually, microwave devices are modeled as active
devices embedded between two ideal, lossless transmission
lines in simple circuit models [9]. This approach has two
main drawbacks: 1) Quasi-TEM transmission lines are used,
and 2) the semiconductor device model is developed in total
separation from the EM wave. Therefore, direct solutions

of Maxwell’s equations are needed for a more accurate and
general approach.

The full-wave physical model used in this work allows a
flexible description of the device along with the appropri-
ate representation of simulation parameters. The application
of the model to different electronic structures, such as the
MODFET’s, with different material profiles and boundaries is
straightforward. It should be noted, however, that the accuracy
of the model is largely affected by the representation of the
structure and material data supplied to the model.

A. Active Device Model

The active device model is based on the moments of the
Boltzmann’s transport equation obtained by integration over
the momentum space. The integration results in a strongly-
coupled highly-nonlinear set of partial differential equations
called the conservation equations [10]-{11]. These equations
provide a time-dependent self-consistent solution for carrier
density, carrier energy and carrier momentum and are given
by

current continuity
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energy conservation
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Similar equations are written for the momentum in the other
directions. The electronic current density distribution J inside
the active device at any time ¢ is given by

J(t) = —qn(t)v(?). “4)

Considering the scale of the problem, the hydrodynamic
equations should be solved in their complete form. In most of
the reported simulations, the momentum conservation equation
is simplified by neglecting the time and spatial dependencies
of the electron momentum [2], [3], [5], [6]. This is equivalent
to the assumption that the electron momentum is able to adjust
itself to a change in the electric field within a very short time.
While this assumption is justified for long-gate devices be-
cause of the negligible effects of the overshoot phenomena, it
leads to inaccurate estimations of device internal distributions
and microwave characteristics for submicrometer-gate devices
[4]. Another assumption that is also eliminated in our work is
the constant effective mass approximation. The variations in
effective mass with respect to time, space and electron energy
are all included in our simulation. The transport parameters
in the energy and momentum equations are energy-dependent
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and obtained from steady-state MC simulations [12]. The low
field mobility is taken as [13]

8000

Uy =
14 /Ng/1 x 1017

B. Electromagnetic Model
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The electromagnetic wave propagation can be completely
characterized by solving Maxwell’s equations. These equations
are first-order linear coupled differential equations relating the
field vectors, current densities and charge densities at any point
in space at any time. They must be, however, supplemented
by constitutive relations. Assuming uniform, linear, isotropic
medium for the dielectric and magnetic relations, Maxwell’s
equations are given by
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VXH—EE-I-J. @)

The conductivity of the medium .is obtained using the active
device model.

C. Coupling the Two Models

The electromagnetic model simulates the evolution of elec-
tric and magnetic fields due to moving free charges. On the
other hand, the hydrodynamic model calculates the response of
charges to applied field. Hence, the coupling between the two
models results in the overall high frequency characteristics of
the semiconductor device. The link between the two models is
established by properly transforming the physical parameters
(e.g., fields and current densities) from one model to the other.
The simulation starts by obtaining the steady-state dc solution,
using Poisson’s equation and the semiconductor device model.
The dc solution is used in the ac analysis as initial values. Then
the ac excitation is applied. Maxwell’s equations are solved for
the electric and magnetic field distributions. The new fields are
used in the semiconductor model to find the current density.
This process is repeated for each time interval. The coupling
procedure and the mesh arrangements for the various quantities
are discussed in detail in the following sections.

1) Initializations: The steady-state dc solutions for electric
fields, current densities, carrier density, carrier velocities,
carrier energy, and the transport parameters are obtained
from the semiconductor model by solving Poisson’s, con-
tinuity, energy balance and momentum balance equations.
These dc solutions serve as the corresponding initial values
inside the active device for the coupled model. Since the dc
solution is performed in two-dimensional (2-D) (z-y plane)
and the ac analysis is performed in 3-D, all the sections of
the semiconductor device along the third dimension (the z-
direction) are initialized with the same dc values for the above
mentioned quantities. To complete the initialization process,
initial magnetic field distribution has to be specified. The
following approach is used to obtain the initial magnetic field
distribution. At steady-state, Maxwell’s equations become

VxE=0
Vdeczjdc.

®)
®

Equation (9) suggests that it is not necessary to find the dc
distribution of the magnetic field, since the dc current density
catries the needed information about the dc magnetic field
distribution. This approach is implemented in our scheme as
one of the measures taken to reduce the computation time.

2) Time-Domain Solution: After completing the above ini-
tializations, the ac excitation is applied. The mesh for the
electromagnetic fields are extended along the z-axis, before
and after the semiconductor device. The extended regions are
made of passive transmission line. At the device input, this
passive section allows the correct mode of the excitation wave
to develop before it is fed to the active device. At the device
output, it is used for absorbing the electromagnetic wave.

The time-domain distribution of the electromagnetic fields
are obtained using Maxwell’s equations. The curl of H can
be written, using (9), as

Vx H=Vx H* 4 J (10)
The electric field is then specified as
OE 1
o = o (VX H* + Jae — gtot) 11

where J*°* is the total current density obtained from the active
device. The magnetic field is given by

?Ez—leE.
at 7

(12)
Equations (11) and (12) give the electric and magnetic field
distributions at each time step. These new values are used
by the semiconductor model to update the current density at
the same time step. These current densities are fed back to
the Maxwell’s equations again to calculate the electric and
magnetic fields in the following time step. This process of
updating the fields and the current densities progresses in
time in response to applied excitation and moves on for an
appreciable amount of time to study the device behavior.
The flowchart in Fig. 1(a) outlines the calculation steps and
the coupling procedure between the semiconductor and the
electromagnetic models. The flowchart in Fig. 1(b) describes
the sequence of operations in the active device model.

1. IMPLEMENTATION USING FDTD METHOD

Both finite-difference and finite-element schemes were used
in semiconductor device simulations. Although the finite-
element method provides a flexible way of solving com-
plex geometries and requires fewer nodes than the finite
difference scheme, it requires a matrix reordering algorithm
to deal with the generated complex matrix structure. This
process reduces the speed of the solution. The finite-difference
method, on the other hand, lends itself naturally to the simple
rectangular geometry generally considered for semiconductor
device simulations. Also, finite-difference schemes are easier
to formulate and considerable information is available on
their stability and convergence properties [14]. In this work,
several finite-difference techniques, such as the upwind and
the Lax methods, are used in conjunction with the basic finite-
difference formulation to achieve stable and accurate solutions.
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Fig. 2. 2-D structure used for the simulation of the active device.

The space increments are adjusted to satisfy Debye length
criteria for semiconductor simulation and wavelength criteria
for EM simulation for a stable solution simultanecously. The
same space increments, used in the two models, are identical
in all the three dimensions.

A. The Simulated Structure

The 2-D structure used in the simulation of the active device
is shown in Fig. 2. The device consists of three basic layers:
the active layer, the buffer layer and the substrate. Due to the
fact that the fields and currents inside the device are confined
to a small region of the actual device and also due to the
large difference in dimensions of the three layers, only a small
region of the device needs to be simulated as shown in Fig.
2. This region encloses the gate electrode and sections of the
source and drain electrodes, and extends well into the buffer
layer. Normally, the source electrode is connected to ground.
The dc operating point of the device is defined by applying
dc voltages at the gate and drain electrodes. The active layer
of the device is a heavily doped n-type region where high-
mobility electrons are generated. The metallic gate makes a
Schottky contact with the semiconductor. This type of contact
suppresses the gate current when it is reverse biased. On the
other hand, the drain and source contacts are ohmic, presenting
virtually zero resistance to the carriers entering or leaving the
device.

The 3-D structure used in the full-wave simulation is shown
in Fig. 3. The semiconductor volume has a dielectric constant
equals that of the GaAs, with free and fixed charges. The free
charges motion is accounted for using the current densities
which are time, field and space dependent. The nonlinear
characteristics of the current densities are obtained from the
solution of the active device model. The electrodes are of zero
thickness and represent the source, gate and drain terminals.
The upper space of the structure is air.

B. Solution of the Hydrodynamic Equations

Equations (1)—(3) are coupled highly nonlinear partial dif-
ferential equations. To decouple these equations in time,
a finite-difference (FD) based scheme is used. The scalar
variables (i.e., potential, carrier density, carrier energy, and
transport parameters) are defined at the basic nodes, whereas
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Fig. 3. 3-D structure used for the simulation of the full-wave model.

the vector quantities (i.e., carrier velocity, electric field, and
current density) are defined at the complementary nodes (i.e.,
between two basic nodes). This type of staggered mesh ar-
rangements separates the component of a vector variable and
facilitates a convenient method for decoupling the variables
and expressing the approximations of the space derivatives
using the FD method. The solution is obtained in a self-
consistent evaluation of the three equations in conjunction with
Maxwell’s equations. It was found that the order by which
these equations are solved is critical to the stability of the
solution. As shown in the flowchart of Fig. 1(b), the change in
carrier momentum is computed first. The carrier density and
energy equations are then solved using the updated distribution
of carrier velocity. The reason is that the relaxation time of the
electron momentum is about one order of magnitude shorter
than dielectric and energy relaxation times. If the order of
the solution is reversed, large changes in momentum will be
introduced at every following time steps leading to potential
instabilities in the solution of the velocity equation. All the
equations are represented by explicit FD schemes. Since the
time step is determined according to the electromagnetic wave
stability condition (At ~ 107'7sec.), no gain is made by
using other FD formulations (e.g. implicit or semi-implicit).
Best accuracy and stability in solving the continuity and energy
equations is obtained using the up-wind scheme, where the
direction of electron velocity dictates the correct differencing.
Because all the inertia terms in the momentum cquation are
taken into account, extra attention is given to its solution
method. The velocity gradient terms in the momentum equa-
tion make the direct finite difference solution sensitive to
small fluctuations and prone to instability. To overcome this
problem, a scheme that utilizes average values over two time
and space steps is used. This scheme, called the Lax method
[15], furnishes a stable solution within the required accuracy.

C. Solution of Maxwell’s Equations

The time-domain solution of Maxwell’s equations is ob-
tained using a 3-D mesh where field components are arranged
following Yee’s method [16]. Using a first order differencing,
(11) and (12) can be decoupled over a small time interval At.
To reduce the computational requirements, a procedure similar

to the one described in [17] is used. The electrodes are taken
as perfect conductors, which leads to zero tangential electric
fields.

To simulate the infinite space surrounding the structure,
absorbing boundaries are used. The choice of absorbing bound-
aries is very critical to the overall stability of the FD scheme.
It has been observed that for a long time simulation or
for boundaries which are placed where the field strength is
high, instability is likely to occur if the absorption is not
perfect [18]. This phenomena is primarily observed in first
order absorbing boundaries. In a review of some of the most
common second-order absorbing boundary conditions [19],
the authors concluded that Higdon’s boundary conditions [20]
gave the best overall efficiency for a waveguided structure.
Higdon’s boundary conditions are based on the fact that an
arbitrary wave can be decomposed into a summation of plane
waves with different angles of incidence ¢. For second-order
boundaries, two velocities have to be chosen according to the
relation v; = ¢ cos 6; where c is the propagation velocity
of the wave inside the medium. In this work, one of the
velocities is related to the effective dielectric constant of the
medium which corresponds to zero angel of incidence [21].
For the other velocity, however, numerical experimentation
was performed to obtain the optimum absorption for the given
geometry and simulation parameters of the problem. It has
been observed that the reflections by the Higdon’s boundary
conditions are an order of magnitude less than those from the
first order absorbing boundary conditions.

IV. RESULTS AND DISCUSSIONS

Parallel implementation of this numerical scheme is neces-
sary due to the inherent computational intensity of the model.
This computational intensity is a result of the limitations on
space and time increments and the long simulation time needed
to obtain steady-state results. In this work, the simulation is
performed on a Massively Parallel Machine (MasPar). With
proper mapping of the variable arrays on the machine process-
ing elements and efficient FORTRAN 90 coding, the scheme
provides a relatively fast method for obtaining device response,
compared to a similar serial code on a super computer.

A. Simulation Parameters

The device considered in this simulation is a 0.2 ym gate
MESFET. The simulation parameters are given in Table I.
The lattice temperature is assumed to be 300 K. The doping
profile is assumed abrupt between the active layer and the
semi-insulating buffer. An 80 x 25 X 30 uniform mesh that
covers the 3-D structure is used. Initially, the device is biased
to Vge = 5.0V and V;; = —0.5V and the dc distributions
are obtained by solving the active device model only. The
state of the MESFET under dc steady-state is represented by
the distribution of potential, carrier density and carrier energy.
Fig. 4(a) shows the equipotential lines inside the MESFET
in steps of 0.5 V. It can be seen that most of the applied
voltage is absorbed in the channel under the gate. Fig. 4(b)
shows the contour plots of the carrier concentration (n/Nd)
in steps of 0.1. The figure shows the depletion region under the
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TABLE I
DeVICE PARAMETERS USED IN THE SIMULATION

Drain and source contacts 0.5 um
Gate-source separation 0.4 ym
Gate-drain separation 0.5 um
Device thickness 0.4 pm
Device width, W 250 um
Device length, L. 2.1 pm
Gate length, Lg 0.2 um
Active layer thickness, a 0.1 pm
Active layer doping 2x1017 cm-3
Schottky barrier height 0.8V
DC Gate-source voltage, Veso 05V
AC Gate-source voltage, Avgs 01v
Operating frequency, ® 80 GHz

gate where the field is at maximum value. The corresponding
energy contour lines are shown in Fig. 4(c) for energies from
0.1 to 0.55 eV. The region between the gate and the drain is
of high energy, where the electric field is strong especially at
the gate edge where the energy exceeds 0.55 eV. This 2-D
model is used to estimate the intrinsic device gain at the bias
points, which is shown in Fig. 5. From this figure, the cut-
off frequency is found to be about 90 GHz and the maximum
frequency of oscillation to be 170 GHz. So the frequency of
operation and the peak value of the ac voltage are chosen to
be 80 GHz and 100 mV, respectively, for ac analysis. One
should notice that no parasitic elements are included in this
estimation. The parasitic elements lowers the estimated cut-off
frequencies.

B. Electromagnetic Wave Propagation

For the electromagnetic-wave analysis, a sinusoidal exci-
tation is applied between the gate and the source electrodes.
The total gate voltage becomes

Vs (t) = Voo + Avgs sin(wt) (13)

where Vi, and Awvg, are the dc and the peak ac voltages
respectively. The excitation is applied as a plane source at
z = 0, as shown in Fig. 3. This plane source corresponds
to the solution of Laplace’s equation of the ac signal at each
time step. The full-wave model is then solved for a few rf
cycles, several tens of picoseconds, to avoid the effects of the
transients on the ac solution. In the following paragraphs, the
input wave means the voltage signal between the gate and
the source electrodes, and the output wave means the voltage
signal between the drain and the source electrodes.

Fig. 6 depicts the input wave evolution at different points
along the z-axis. The input wave decreases in magnitude as
it propagates along the device width. This is mainly due to
the electromagnetic energy loss to the conducting electrons.
The active device role in attenuating the input wave can be
appreciated by comparing two waves; one of them propagates
on the active device and the other propagates on a similar

source

gate
0.0 AN

0.2] 0.7

source

source

(©)

Fig. 4. Contour plots for the dc distributions inside the MESFET. (a)
Equipotential lines in steps of 0.5 V. (b) Carrier concentration (n/Nd) in
steps of 0.1 (c) Carrier energy in steps of 0.15 eV.
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Fig 5. Frequency response of the MESFET.

structurc made of a semi-insulating GaAs (i.e., a passive device
with the same transmission line configuration), as shown in
Fig. 7. The active device significantly attenuates the input
wave as it propagates along the z-direction. On the other hand,
the reduction in the input wave amplitude in the passive device
case is insignificant.

Electron-wave interactions can be understood by examining
the input-output waveforms at z = 75 um, as shown in Fig.
8. The output wave lags the input wave by about 5 ps. This
delay is due to the finite device-switching time. It is attributed
to the electron transit time from the source side to the drain
side of the device. A simple time-distance calculation verifies
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this observation. The phase shift between the input and output
waves is clearly shown in this figure. It is more than 180°
as expected, since it accounts for the device switching time
as well as the normal amplifier phase shift. Fig. 9 shows the
temporal evolution of the output wave at different sections
along the % direction. These variations are shown at device
widths of 75, 120, 165, 205 zm away from the excitation plane.
Several important observations can be made from this figure.
First, early in the simulation, the electronic effect is not present
and the wave amplitude decreases along the device width.
Again, this is due to the finite device switching time. Later, as
more electromagnetic energy is propagated along the device,
the wave energy builds up, and the wave amplitude increases.
Second, the figure shows that, at a particular device width, the
voltage amplification is optimum. For the case considered in
this simulation, the device width where the maximum gain is
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Fig. 8.

Input- and output-voltage waveforms of the MESFET. Input: solid
line, output: dashed line.

attained is about 120 #m. Beyond this width, the voltage gain
decreases. To understand this phenomena, one must consider
the different phase velocities between the input and output
waves, caused by the different electrode geometries. This
phase velocity mismatch can lead to a phase cancellation and,
consequently, reduction of the device gain. This phenomena
is one of the most interesting aspects of electromagnetic wave
propagations on active device electrodes. It is discussed in
more detail in [9].

One of the advantages of the approach presented here is
ability to analyze the internal parameters and the main physical
variables during the various phases of the device operation.
For example, the wave effect on the carrier density and the
carrier energy inside the conducting channel near the drain
side of the gate are shown in Figs. 10 and 11, respectively.
In Fig. 10, the change in the electron density (An) lags the
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Fig. 10. Temporal evolution of the change in electron density (An) in the
channel near the drain side of the gate at several points in the z-direction.

input wave by, at least, 3.5 ps. Moreover, the electron density
variations are in phase with the input wave. It should be noted
that the lag-time for the carrier density is shorter than the
device switching time, since the latter is the accumulation
of the lag-times of all quantities, including momemtum and
energy lag-times, in addition to the carrier density lag-time.
Fig. 11 shows that the electron energy takes a slightly longer
time, than the carrier density, to respond to the input wave
(6 ~ 8ps). The variations in energy are, apparently, in the
phase with the output wave. rather than the input wave. Fig.
12 illustrates a significant device behavior. In this figure, the
peak values—at steady state—of gate voltage, drain voltage
and output current are drawn versus distance along the device
width. The quantities are normalized with respect to the values
at the center of the device width. The results indicate a
nonlinear energy build-up along the device width at the drain
side and a linear drop in wave amplitude at the source side. The
explanation is similar to that given in the previous paragraph.
For wider transistors or higher input levels. the nonlinear
energy build-up is expected to become more pronounced along
the device width.

Fourier analysis is performed on the output signal to obtain
the gain-frequency and phase-frequency characteristics of the
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Fig. 11. Temporal evolution of the change in electron energy (Ae) in the

channel near the drain side of the gate at several points in the z-direction.
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Fig. 12. Space variations of the peak values of gate voltage, drain voltage

and output current.

device. Fig. 13 shows the device gain at several points along
the device width. The curves have global maxima at the
fundamental frequency (f, = 80GHz) and relative peaks at
multiples of f,. The dc component is also shown for each
case. The relative phase angles of the various harmonics are
shown in Fig. 14. This graph demonstrates that the relative
phase angle is not a linear function with the frequency. This
is due to the dispersive nature of the structure, which is a
nonhomogenious transmission line from the electromagnetic
wave point of view. The wave dispersion is enhanced by the
presence of electrons, which further slows the electromagnetic
wave. The phase velocity of the wave can be calculated using
the phase information given. At the fundamental frequency the
phase velocity of the output wave is v, ~ 1.01 x 1019 coys. It
can also be noted from the curved-up phase line of Fig. 14 that
wave dispersion is more pronounced at higher frequencies.

V. CONCLUSION

Full-wave analysis is employed in device modeling to
include the effects of device-wave interactions. The work
described in this paper presents a complete characterization
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Fig. 13. Amplitude analysis of the output wave at several points in the
z-direction using Fourier transform.
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Fig. 14. Phase analysis of the output wave at several points in the z-direction
using Fourier transform.

of high-frequency modeling by incorporating electron-wave
interactions in a typical microwave device structure. This
has been achieved by a model consisting of a full wave
time-domain solution of Maxwell’s equations coupled to the
active device model. The resulting simulator is capable of
evaluating the effects of the propagating wave on device
performance.

The simulation results have brought to light a number of
interesting findings summarized as follows.

1) The simulation confirms that a significant device-wave
interaction takes place in high frequency devices.

2) The energy exchange between the electromagnetic wave
and the carriers results in a monotonic decrease in the
input wave amplitude, and a nonlinear increase in the
output wave amplitude along the device width.

3) The simulation predicts the optimum device width to
maximize the gain for a given device structure.

4) The carrier density and the carrier energy variations in
the conducting channel near the drain side of the gate
are consistent with the output voltage variations.

5) The various physical quantities governing the device
operations have different delay times (i.e., different
switching times).

6) Frequency-domain analysis on the output signals gives
the wave propagation characteristics of the device. Both
the harmonics generation, due to the nonlinear nature of
the device, and the dispersive properties of the structure
are analyzed.

The model presented in this paper represents an interesting
contribution as it constitutes a first step to the full-wave
characterization of microwave and millimeter wave devices.
The problems of electromagnetic coupling, discontinuities,
and parasitic elements resulting from distribution pads can be
studied. Also, the analysis can be extended to more complex
semiconductor structures. The application of the model to the
MODFET’s is currently being developed.
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